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Abstract—This work addresses the problem of detecting gas dis-
persions through concentration sensors with wireless transmission
capabilities organized as a distributed Wireless Sensor Network
(WSN). The concentration sensors in the WSN perform local se-
quential detection (SD) and transmit their individual decisions to
the Fusion Center (FC) according to a transmission rule designed
to meet the low-energy requirements of a wireless setup. The FC
receives the transmissions sent by the sensors and makes a more
reliable global decision by employing a SD algorithm. Two variants
of the SD algorithm named Continuous Sampling Algorithm (CSA)
and Decision-Triggered Sampling Algorithm (DTSA), each with
its own transmission rule, are presented and compared against a
fully-batch algorithm named Batch Sampling Algorithm (BSA). The
CSA operates as a time-aware detector by incorporating the time of
each transmission in the detection rule. The proposed framework
encompasses the gas dispersion model into the FC’s decision rule
and leverages real-time weather measurements. The case study
involves an accidental dispersion of carbon dioxide (CO2). System
performances are evaluated in terms of the receiver operating
characteristic (ROC) curve as well as average decision delay and
communication cost.

Index Terms—Wireless sensor networks (WSN), sequential
detection (SD), distributed detection, Industry 4.0, gas dispersion.

I. INTRODUCTION

W IRELESS Sensor Networks (WSNs) have become in-
creasingly popular for monitoring applications in the
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past decade: a trend that was amplified with the emergence of the
Internet of Things (IoT) paradigm [3]. One area of interest has
been the detection of harmful events, with applications related
to i) security, counter-terrorism, and defense [4], and ii) safety
and environmental protection in Industry 4.0 [5], [6].

More specifically, WSNs are typically composed of low-cost
devices monitoring the surrounding environment. Due to strin-
gent bandwidth and/or energy constraints (e.g. to ensure the
long-lasting lifetime of IoT nodes), sensors are usually required
to send extremely-compressed versions of their measurements
to a Fusion Center (FC) which collects and analyzes the data
for a final decision. For this reason, the detection of diffusive
sources in safety-critical systems via WSNs has shifted toward
the adoption of binary sensors [7], [8]. In such scenarios, the
FC generates an alarm if an adverse event is detected, triggering
appropriate actions to mitigate the consequences. This is partic-
ularly relevant to manufacturing, energy, and process industries,
where equipment malfunctions can put workers and the environ-
ment in danger, as well as result in unplanned shutdowns, high
costs, and lost revenue [9].

In this context, the associated inference problems involve
the early detection of uncooperative sources, such as the loss
of containment of fluids in the process industry (in gas and/or
liquid form). The detection of heavy gases is among the most
relevant problems, as heavy gases do not adhere to neutral or
positively-buoyant dispersion behavior and tend to spread along
the ground, with the further threat of asphyxiation induced by
the displacement of air, resulting in low oxygen concentrations.
In these industrial scenarios, it is of utmost importance to ac-
curately detect such critical events as quickly as possible. An
additional source of complexity must be taken into account in
case the gas of interest is commonly found in the atmosphere:
this can sensibly decrease the detector’s performance. To this
end, an industrial IoT setup with inexpensive sensors and the
possibility of exploiting real-time weather data as well as the
integration of the gas dispersion model represents an enabler for
this problem.

This work addresses the sequential detection (SD) of gas
dispersion using a network of wireless concentration sensors,
focusing on gases with a non-null atmospheric concentration
in normal conditions. Performance evaluation is carried out on
a simulated dispersion of heavy gas. More specifically, in this
study, we adopt the SD framework with the aim of achieving
higher accuracy and lower detection time with respect to a fully
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batch approach. In SD the observations are processed one at a
time, and a decision is made after each observation to either
declare the presence or absence of the event of interest or
continue with the detection process.

A. Related Work

Several methods for gas detection have been developed as-
suming a Gaussian-plume point-source model based on dif-
fusion/advection processes (not suitable for heavy gases) or
direct use of Fick’s laws of diffusion (not suitable for complex
systems), e.g. with application to dispersion of biochemical
moving sources [10], [11], atmospheric pollutants [12] and
release of light gases [13]. Also, in order to deal with the
vague prior, importance sampling was implemented using the
progressive correction technique in [14]. The algorithm showed
good performance in terms of both localization and estima-
tion accuracy. An interesting feature of this approach is that
system-level performance can be controlled by a local detection
threshold. Other novel methods rely on neural networks for
plume tracking [15]. However, such works neglect the detection
task and directly focus on the characterization of the dispersion
which is facilitated by the use of a centralized sensor network.

Nevertheless, the current literature lacks studies on the use of
WSNs for the detection of gases with a non-null atmospheric
concentration in normal conditions, e.g. carbon dioxide (CO2)
whose current average concentration in the atmosphere is around
400 ppm. Most of the above-mentioned studies focus on the de-
tection of gases that are not commonly present in the atmosphere,
leading to amplified signal-to-noise ratios. Some preliminary
investigations have attempted to fill this gap by demonstrating
that the use of a model-based algorithm implemented through
a WSN can improve performances in contrast to a model-free
algorithm (i.e. the implementation of a counting rule on the
received binary decisions) [1], [2]. This study builds upon these
initial inquiries by incorporating the issue of early detection,
achieved through the implementation of a SD approach.

Event detection can be tackled with multiple approaches.
Distributed detection via WSNs using batch decision rules is
a mature area of research [16], [17], [18], [19], [20]. SD (also
known as sequential analysis or sequential hypothesis testing)
is a well known framework popularized by Wald with the se-
quential probability ratio test (SPRT) [21], [22]. The optimality
of SPRT allows achieving faster online decisions with respect to
traditional batch detectors requiring a fixed sample size before
decisions can be made via the likelihood ratio test (LRT) [23].
A complete overview of SD can be found in [21], [23], [24].

SD via WSNs has been explored in the last decade, but
still remains an open research topic. In [25], an architecture
was proposed where both the sensors and the FC perform
sequential detection with sensors communicating their respec-
tive local decisions to the FC. Such a setup was proven to
have asymptotically equivalent performance to the centralized
counterpart in specific conditions. A higher-performance alter-
native was presented later in [26], grounded on the assumption
that the observed signal is a sampled version of a continuous
stochastic process with continuous paths. Other works (e.g. [27])

applied the distributed SD paradigm to develop spectrum sensing
schemes for cognitive radio networks exploring quantization
strategies. Practical aspects such as imperfect reporting channels
(between sensors and FC) and requirements for reduced energy
consumption were considered in [28], [29]. Recent works have
focused on alternative tests than the SPRT to be used in WSNs,
as the exact knowledge of the distribution function of the signal
in the alternative hypothesis is often missing. Therefore, for
a composite hypothesis test suitable in WSNs, a generalized
sequential probability ratio test (GSPRT) was studied in [30].

Truncated versions of sequential tests have been explored in
order to bind the decision time that might otherwise become
undesirably long. When applied to one-sided tests, they are
usually referred to as truncated one-sided (TOS) tests. A solid
overview of truncated tests can be found in [24]. This option
was firstly explored for SPRT and GSPRT in [31], and recently
adopted in combinations with other tests. More specifically,
truncation was applied to the repeated significance test in [32], to
the random distortion test in [33], and finally to a FC performing
the score test in the context of detection of a non-cooperative
moving target in [34], [35].

B. Contribution and Paper Organization

This work investigates the use of a WSN made of con-
centration sensors in an industrial IoT setup with inexpensive
small-battery sensors for gas detection purposes. First, we intro-
duce a fully-batch algorithm, named Batch Sampling Algorithm
(BSA), characterized by a fixed sample size at both sensors
and FC. Next, with the goal of reducing the detection time,
we propose two fully sequential algorithms. In the proposed
strategies, each sensor measures the local concentration and
takes a local decision via SD regarding the presence or absence
of a gas dispersion. A transmission rule is present to regulate the
communication from the sensors to the FC. Next, the FC, based
on the transmissions received by the sensors, performs a global
decision taking advantage of updated weather measurements and
the integration of the gas dispersion model in the detection rule.

The first proposed method, named Decision-Triggered Sam-
pling Algorithm (DTSA), has the FC sampling the sensors’
transmission only when local decisions are taken. The sec-
ond proposed method, named Continuous Sampling Algorithm
(CSA), requires the FC to continuously monitor the transmis-
sions from the sensors (which also encodes the temporary lack
of a local decision). In the CSA, at each instant, the FC updates
a test statistic based on the transmission values and the time
elapsed since the last sensors’ decision, resulting in a time-aware
algorithm.

This work presents new advances in the field of industrial
monitoring as listed in the following:
� The study is based on the integration of the gas dispersion

model into the design of the FC;
� The proposed methods make use of externally-available

measurements from weather stations (e.g. wind measure-
ments);

� The sequential nature of the proposed methods allows
to reduce the detection time and removes the limitation
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imposed by a fixed number of samples needed to take a
decision;

� The introduction of a transmission rule tailored for se-
quential binary local detectors allows for reduced energy
consumption in the case of CSA.

This work further explores the use of WSNs for gas detection
via the integration of the dispersion model within the detection
algorithm previously presented in [1], [2]. In these earlier works,
we compared the well-known model-free counting fusion rule
with a model-aware generalized Chair-Varshney fusion rule,
proving the benefits of such implementation. The further contri-
bution given by this work is the extension from a single-sample
detection to a SD approach.

The remainder of the article is organized as follows: Section II
provides a system overview, focusing on the WSN architecture
and the signal model (including the gas dispersion character-
izations); the batch approach is described in Section III; the
proposed sequential algorithms are described in Section IV,
focusing on both sensors and the FC; Section V discusses
the performances of the local sequential detectors in terms of
accuracy, and decision delay; the computational complexity and
the communication costs are discussed in Section VI; numerical
results of the considered case study are presented in Section VII;
finally, conclusions and further works are addressed in Sec-
tion VIII.

C. Notation

Uppercase (resp. lowercase) bold letters denote matrices
(resp. column vectors); [·]T denotes the transpose operator; â
is an estimate of the variable a; E(·), Var(·), Cov(· , ·) denote
expectation, variance, and covariance;P(·) and p(·) denote prob-
ability mass functions (PMFs) and probability density functions
(PDFs), while P(·|·) and p(·|·) their corresponding conditional
counterparts; in particular, Ej(·), Pj(·) and pj(·) denote the
expectation, the PMF, and PDF, respectively, under the hypoth-
esis Hj , with j ∈ {0, 1}; Lθ(a) � ln [P1(a; θ)/P0(a)] is the
log-likelihood ratio where the dependence on the parameter θ is
highlighted; U(a, b) denotes a continuous uniform distribution
with minimum value a and maximum value b; N (μ,Σ) denotes
a multivariate Gaussian distribution with meanμ and covariance
matrix Σ; Q(·) is the complementary cumulative distribution
function (CCDF) of the standard normal distribution; δa,b is the
Kronecker delta; finally O(·) denotes the big O notation.

II. SYSTEM MODEL

What follows is the overview of the distributed WSN under
consideration, followed by the characterization of the signal
measured by the sensors.

A. Wireless Sensor Network Model

The scenario consists of a distributed WSN comprising K
static sensors and its task is to assess the global absence (H0) or
presence (H1) of a gas leak within the monitored environment (a
schematic representation is given in Fig. 1).1 Such a dispersion

1The possibility of incurring faulty sensors is not taken into account as it
is outside of the scope of the present work. Fault detection and identification

Fig. 1. Wireless sensor network architecture.

is characterized by its position θ and intensity I . For the kth
sensor (k = 1, . . . ,K), the location and the measurement of gas
concentration at discrete-time t ∈ N

+ are denoted by xk and
ykt , respectively. Each sensor computes a test statistic on the
above-mentioned signal and assesses the local absence (H0)
or presence (H1) of an anomalous excessive gas concentration.
For the sake of convenience, we assumed the sensor to have the
same sampling frequency and to be perfectly synchronized. In
the algorithms under study, when a sensor makes a decision, it
immediately starts a new detection instance until the FC takes
a global decision, allowing the FC to receive multiple decisions
from a single sensor. The global decision exploits the integration
of real-time weather data as well as the dispersion model of the
gas.

When the BSA is employed, each sensor takes a decision after
a fixed number of measurements. At each instant, each sensor
sends a transmission value τkt = 1 (resp. τkt = −1) to the FC if
H1 is declared (resp.H0), or τkt = 0 if the sensor has not finished
collecting its fixed number of samples. Specifically, when τkt =
0, the sensor does not transmit a physical communication to the
FC. At a predetermined time, the FC takes a global decision
Ĥ ∈ {H0,H1} computing a test statistic on the received values
{τkt : |τkt | = 1}k,t.

In the newly proposed methods (DTSA and CSA), both the
sensors and the FC make use of SD, with the aim of reducing
the decision delay obtained in the BSA.

In the DTSA, the sensors send a transmission value to the
FC after completing a sequential test, i.e. not at predetermined

techniques based on data-driven philosophy could be readily incorporated in the
proposed approach [36].
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times, unlike in the BSA. Here, at each t, the FC performs a test
on {τkt : |τkt | = 1}k and takes a global decision.

In the CSA, each individual sensor transmits a bit τkt = 1
(resp. τkt = 0) to the FC if H1 is locally declared (resp. if H0

is locally declared or if the sensor has not reached a decision
yet). In addition to being spectrally efficient, as only one bit is
transmitted on the communication channel between the sensor
and the FC, such a system is highly energy efficient when
OOK modulation is employed for communicating the local
decisions [5]. Moreover, at each t, the FC sequentially performs
a time-aware test on the transmission values {τkt , akt }k, where
akt is the number of instants passed since the last decision made
by the kth sensor.

In this work, we assume a perfect communication channel
between sensors and FC.

B. Signal Model

The statistical model of the measured gas concentration ykt ,
depending on the corresponding hypothesis, is the following:{

H0 : ykt = wk
t

H1 : ykt = ck + wk
t
, (1)

where wk
t ∼ N (μk, σ

2
k) represents the gas concentration

present in normal operating conditions in the surrounding of
the kth sensor [37], where the values of μk and σ2

k are both
known. The values of {μk}k and {σ2

k}k can be estimated by
calculating the sample mean and sample variance from a set of
measurements acquired in normal operating conditions (H0).
Also, ck ≥ 0 is the observed excess gas concentration resulting
from dispersion, here assumed constant in time since this work
deals with steady-state dispersions.

In this work, we assume that the measurements collected by
the same sensor {ykt }t are i.i.d., while the measurements col-
lected by different sensors {ykt }k are independent, with distribu-
tions that vary depending on {ck}k. This assumption arises from
(1) and the treatment of {wk

t }t,k as i.i.d. variables. Although this
treatment simplifies reality, assuming null space and time corre-
lation in the modeling of {wk

t }t,k can be justified by ensuring ad-
equate spatial separation between the sensors and a sufficiently
low sampling frequency. A low sampling frequency results in
auto-covariance values dominated by lower-frequency compo-
nents. Moreover, accurately predicting these lower-frequency
components in the atmospheric fluctuation of the concentration
of the gas presents significant complexities. Therefore, we chose
to simplify the model by excluding them [20], [38]. Hence, the
distribution of ykt is:{

H0 : ykt ∼ N
(
μk, σ

2
k

)
H1 : ykt ∼ N

(
μk + ck, σ

2
k

) , (2)

where the value of ck is the result of a dispersion phenomenon.
There is extensive literature on how to obtain the value of ck due
to its industrial safety applications. We assume:

ck = F(xk,A,B, C) , (3)

where A is the set of all unknown variables such as the release
position (θ), and the intensity (I);B is the set of variables whose

value is known and constant in time, once the variables in A
are fixed. B includes variables such as temperature, density,
initial concentration of the release, as well as morphological
properties of the area. C is the set of variables that can be con-
sidered independent from the variables in A and xk, and whose
value is known via real-time measurement. This set includes the
meteorological parameters. The values of the variables in B are
set by exploiting the knowledge of the monitored environment,
while those in C require real-time meteorological data. For the
case of a release, the most important variables belonging to A
are θ and I , hence once xk, θ, and I are fixed, and the variables
in B and C are available, the value of ck can be unequivocally
determined.

III. BATCH DETECTION

This section is dedicated to the BSA which relies on fixed
sample size at both sensors and FC levels for the detection task.
This algorithm is designed for a FC that is able to compute
ck via the map in (3) once the unknown dispersion variables
belonging to A have been fixed. ck is written as ck(θ, I) to
emphasize the unknown variables. The other variables in (3)
are known and constant throughout the detection procedure.
Real-time weather data and, possibly, physical knowledge of the
monitored area are necessary to determine the variables inB and
C. The considered architecture requires solving a maximization
problem: we assume grid-search optimization.

Specifically, the kth sensor will take a local decision after
collecting Tk samples, after which it restarts a new detection
instance. As a consequence, each sensor is characterized by a
deterministic stopping time corresponding to the mth decision
tkm = mTk. For the model described in (1), the likelihood ratio
test (LRT) is uniformly most powerful, resulting in each sensor
calculating a statistic Λk

t with the following form:2

Λk
t �

t∑
i=1

(
yki − μk

)
=

{
λk
1 , t = 1

Λk
(t−1) + λk

t , t > 1
, (4)

where λk
t � ykt − μk. This leads to the following decision rule:

dkm �
{
H1 , if Λk

mTk − Λk
(m−1)Tk ≥ γk

H0 , otherwise
, (5)

with γk as a local test threshold. The probability of false alarm
(Pk

F ) and detection (Pk
D(ck)) of the local batch detector are the

following:

Pk
F � P0

(
dkm = H1

)
= P0

(
dk1 = H1

)
= P0

(
Λk
Tk ≥ γk

)
= Q

(
γk√
Tkσ2

k

)
,

Pk
D(ck) � P1

(
dkm = H1

)
= Q

(
γk − Tkck√

Tkσ2
k

)
, (6)

where we exploited the fact that {Λk
mTk − Λk

(m−1)Tk}m are i.i.d.,
and therefore we chose m = 1.

2The LRT statistic can be simplified into
∑t

i=1
yki . However, we prefer using

the above-mentioned statistic to ease the comparison with the DTSA and CSA.
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To prove that the above-mentioned elements are i.i.d., it is
sufficient to say that, since {yki }i are i.i.d., the same applies to the
disjoint subsequences {yk(m−1)Tk+1, . . . , y

k
mTk}m. This means

that the set of statistics computed over these subsequences, ex-
pressed as {

∑mTk
i=(m−1)Tk+1 λk

i }m, also consist of i.i.d. elements.

Finally, by applying the definition of Λk
t from (4), we can con-

clude that the elements in the sequence {Λk
mTk − Λk

(m−1)Tk}m
are i.i.d. as well.

At each instant t, the kth sensor sends a transmission value to
the FC according to the following transmission rule:

τkt �

⎧⎨⎩
+1 , if ∃m : t = m Tk ∧ dkm = H1

−1 , if ∃m : t = m Tk ∧ dkm = H0

0 , otherwise
, (7)

with τkt = 0 indicating the absence of physical communication
from the sensor to FC during the sensor’s fixed decision period.

At predetermined time T ∗, the FC takes a global decision
employing a GLRT statistic ΛB on the local decisions:

Ĥ �
{
H1 , if ΛB ≥ γ∗

H0 , otherwise
, (8)

with γ∗ as a global test threshold. Since the statistic is a function
of the local decisions having known fixed decision delays, it is
recommended to set T ∗ so that ∃ k, a ∈ N

+ : T ∗ = a Tk. In or-
der to calculate ΛB, the FC has to keep track of the transmission
times tkm:

tkm = inf
{
t > tkm−1 :

∣∣τkt ∣∣ = 1
}
, tk0 = 0 . (9)

Specifically, ΛB is a statistic on the received local deci-
sions, which translates into a test on the transmission values
{τkt : |τkt | = 1}t,k:

ΛB � max
θ,I

{
Lθ,I

({
τkt :

∣∣τkt ∣∣ = 1
}
1≤t≤T ∗

1≤k≤K

)}

= max
θ,I

⎧⎨⎩
K∑

k=1

Mk
T ∗∑

m=1

Lθ,I

(
τktkm

)⎫⎬⎭ , (10)

where Mk
T ∗ �

∑T ∗

t=1 |τkt | is the number of local decisions taken
by the kth sensor up to time T ∗. In particular, Lθ,I(τ

k
tkm

) has the
following form:

Lθ,I

(
τktkm

)
=

⎧⎨⎩ln
Pk
D(ck(θ,I))

Pk
F

, if τktkm = +1

ln
1−Pk

D(ck(θ,I))

1−Pk
F

, if τktkm = −1
. (11)

IV. SEQUENTIAL DETECTION

In this section, we explore the CSA and DTSA. First, we
examine the SD algorithm at a sensor level shared by both
architectures. Next, we outline the algorithm at the FC level
in the two different methods.

A. Local Sequential Detection

Each sensor performs SD on the hypotheses in (1). Equa-
tion (2) highlights that the test has to be one-sided since
{H0,H1} correspond to {ck = 0, ck ≥ 0}, respectively. For this

task, we compute the GSPRT statistic, where the parameter
ck in the log-likelihood ratio is replaced with its maximum
likelihood estimate ĉk,t � 1

t

∑t
i=1 y

k
i − μk. This results in the

same statistic Λk
t already introduced in (4).

The GSPRT, analogously to the generalized likelihood ratio
test, is asymptotically non-negative for one-sided hypothesis
testing problems, thus the use of a negative threshold is un-
feasible. To overcome this issue, we resort to a TOS test by
establishing the maximum amount of time Tk between two
consecutive local decisions that the kth sensor can take in order
to declare H1, otherwise, H0 is declared. Denoting γk as a
positive local threshold and the time at which the sensor takes
the mth decision with tkm, the mth stopping time is defined as
the following:

tkm � min
{
inf

{
t > tkm−1 : Λk

t − Λk
tkm−1

≥ γk

}
, tkm−1 + Tk

}
= min

⎧⎨⎩inf

⎧⎨⎩t > tkm−1 :

t∑
i=tkm−1+1

λk
i ≥ γk

⎫⎬⎭, tkm−1 + Tk

⎫⎬⎭,

(12)

with tk0 = 0 and Λk
0 = 0. Next, the decision rule is as follows:

dkm �
{
H1 , if Λk

tkm
− Λk

tkm−1
≥ γk

H0 , otherwise
. (13)

Remarks: In the process of deriving the local detector, we
employ the Karlin-Rubin theorem to reduce the test statistic
(via monotonic transformations) before substituting ck with its
MLE. This reduction is achieved by exploiting the non-negative
nature of ck.

B. Fusion Center Sequential Detection

Here we describe the two FC detection methods for gas
dispersion: i) DTSA, a SD algorithm with the FC performing
a test statistic solely based on the received local decisions (the
knowledge of the sampling period is not required); ii) CSA, a
novel time-aware SD algorithm with the FC performing a test
statistic on those instants where the sensors take decisions as
well as on those instants where the sensors have not reached
a decision yet (the knowledge of the sampling period for each
sensor is required). As in the BSA, both methods rely on the
ability to calculate the values of ck via the map in (3).

1) Decision-Triggered Sampling Algorithm (DTSA): This al-
gorithm consists of the FC sequentially updating a test statistic
when a local decision is taken. Similarly to the BSA, the trans-
mission rule encodes the detection status of the sensors:

τkt �

⎧⎨⎩
+1 , if ∃m : t = tkm ∧ dkm = H1

−1 , if ∃m : t = tkm ∧ dkm = H0

0 , otherwise
, (14)

where τkt = 0 indicates the absence of a physical transmission
from the sensor to FC. This transmission rule translates into
a test statistic performed on those transmission values that are
decision-triggered {τkt : |τkt | = 1}t,k. Similarly to the design of
the local detectors, the presence of the unknown parameters θ
and I in the hypothesis H1 requires the use of a GSPRT statistic
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here denoted by ΛD
t . Likewise, we use a time limit T ∗ at which,

if the FC has not declared H1 yet, H0 is automatically reported,
leading to the following stopping rule and decision rule:

t∗ � min
{
inf

{
t : ΛD

t ≥ γ∗}, T ∗} , (15)

Ĥ �
{
H1 , if ΛD

t∗ ≥ γ∗

H0 , otherwise
. (16)

At each t, in order to calculateΛD
t , the FC needs to recover the

stopping times tkm (using (9)), as well as (recursively) calculate
the number of local decisions taken by the kth sensor up to time
t, for all k:

Mk
t = Mk

t−1 +
∣∣τkt ∣∣ , Mk

0 = 0 . (17)

The next step consists of the FC computing the GSPRT
statistic ΛD

t :

ΛD
t � max

θ,I

{
Lθ,I

({
τki :

∣∣τki ∣∣ = 1
}

1≤i≤t
1≤k≤K

)}

= max
θ,I

⎧⎨⎩
K∑

k=1

Mk
t∑

m=1

Lθ,I

(
τktkm

)⎫⎬⎭ , (18)

where again we exploited the independence of the local decisions
in time and space. The term Lθ,I(τ

k
tkm

) can be obtained using the
overall local performances of the sensors:

Lθ,I

(
τktkm

)
=

⎧⎨⎩ln
Pk
D(ck(θ,I))

Pk
F

, if τktkm = +1

ln
Pk
M (ck(θ,I))

Pk
C

, if τktkm = −1
, (19)

with Pk
D, Pk

F , Pk
M , and Pk

C representing the overall probability
of detection, false alarm, miss detection, and correct rejection,
respectively, of a sequential detector. These metrics are dis-
cussed in Section V.

2) Continuous Sampling Algorithm (CSA): In this configu-
ration, the kth sensor transmits a message to the FC only when
H1 is declared, so we can state the following transmission rule
at each t:

τkt �
{
1 , if ∃m : t = tkm ∧ dkm = H1

0 , otherwise
, (20)

where τkt is the transmission value, with τkt = 0 indicating the
absence of a physical transmission from the sensor to FC.

Meanwhile, the FC sequentially updates a statistic using the
received transmission values {τkt }k,t. The knowledge of the
sampling period of each sensor allows such a continuous sam-
pling although τkt = 0 does not constitute a physical transmis-
sion. The reason behind the use of the same transmission value
τkt = 0 to represent the absence of a decision and a negative
decision lies in the deterministic nature of the time taken by a
sensor to declareH0 (equal toTk) which allows to unequivocally
distinguish the two cases. Similarly to the previously proposed
architecture, we employ a truncated GSPRT, whose statistic is
indicated with ΛC

t with a time limit T ∗, leading to the following
stopping rule and decision rule:

t∗ � min
{
inf

{
t : ΛC

t ≥ γ∗}, T ∗} ,

Ĥ �
{
H1 , if ΛC

t∗ ≥ γ∗

H0 , otherwise
. (21)

At each t, the calculation ofΛC
t requires the FC to sequentially

deduce, for each sensor, whether the received transmission value
τkt corresponds to a local decision or not, and retrieve the current
delay akt :

tkm = min
{
inf

{
t > tkm−1 : τkt = 1

}
, tkm−1 + Tk

}
, (22)

Mk
t =

{
Mk

t−1 + 1 , if t = tkMk
t−1

+ 1

Mk
t−1 , otherwise

, (23)

akt =

{
1 , if t = tkMk

t−1
+ 1

akt−1 + 1 , otherwise
, (24)

where Mk
t now counts the number of local decisions taken by

the kth sensor at time t including the one that is currently being
taken, with tk0 = 0 and Mk

0 = 0. The next step consists of the
FC computing the GSPRT statistic ΛC

t :

ΛC
t � max

θ,I

{
Lθ,I

({
τki
}

1≤i≤t
1≤k≤K

)}

= max
θ,I

⎧⎨⎩
K∑

k=1

Mk
t∑

m=1

Lθ,I

(
τkmin {t,tkm}, a

k
min {t,tkm}

)⎫⎬⎭ , (25)

where we exploited the independence of the local decisions
in time and space. The generic value of Lθ,I(τ

k
t , a

k
t ) can be

expressed using the instant local performances of the sensors:

Lθ,I

(
τkt , a

k
t

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ln

P
(k,ak

t
)

D (ck(θ,I))

P
(k,ak

t
)

F

, if τkt = 1

ln
P

(k,ak
t
)

M (ck(θ,I))

P
(k,ak

t
)

C

, if τkt = 0

, (26)

with P(k,i)
D , P(k,i)

F , P(k,i)
M , and P(k,i)

C representing the instant
probability of detection, false alarm, miss detection, and correct
rejection, respectively (see Section V).

V. ANALYSIS OF LOCAL SEQUENTIAL DETECTION

The assessment of the local performances of sequential de-
tectors is now reported. First, we assess the instant and overall
performances. Next, we analyze the local decision delays. In the
rest of the work, to ease the comparison between the presented
architectures, we will assume that the deadlines Tk’s (resp. T ∗)
used in the DTSA and CSA are set to have the same values of
the sample sizes at sensor level (resp. FC level) used in the BSA.

A. Instant Local Performances

We analyze the local performances at thekth sensor in terms of
instant probability of false alarm P(k,i)

F and instant probability

of detection P(k,i)
D (ck) for the generic mth decision with respect

to each time instant {tkm−1 + i}Tki=1:

P(k,i)
F � P0

(
dkm = H1, t

k
m − tkm−1 = i

)
= P0

({
Λk
t < γk

}
t<i

,Λk
i ≥ γk

)
,
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P(k,i)
D (ck) � P1

({
Λk
t < γk

}
t<i

,Λk
i ≥ γk; ck

)
, (27)

where, analogously to (6), we exploited the fact that
{Λk

t − Λk
tkm−1

}
m

are i.i.d. for any t ∈ [tm−1 + 1, tm−1 + i], and

therefore we chose m = 1.
By examining (2) and (4), we have:{

H0 : Λk
i ∼ N

(
0, iσ2

k

)
H1 : Λk

i ∼ N
(
ick, iσ

2
k

) . (28)

Therefore (27) is obtained via computing the CDF of a multi-
variate Gaussian random variable in the form of Pj(z

k
i ≤ 0),

with zk
i

Hj∼ N (μj

zk
i

,Σzk
i
), where:

zk
i �

⎡⎢⎢⎢⎣
Λk
1 − γk

...
Λk
i−1 − γk

−Λk
i + γk

⎤⎥⎥⎥⎦, μ0
zk
i
�

⎡⎢⎢⎢⎣
−γk

...
−γk
γk

⎤⎥⎥⎥⎦,

μ1
zk
i
�

⎡⎢⎢⎢⎣
ck − γk

...
(i− 1)ck − γk
−ick + γk

⎤⎥⎥⎥⎦,

Σzk
i
�

⎡⎢⎢⎢⎢⎢⎣
σ2
k σ2

k · · · σ2
k −σ2

k

σ2
k 2σ2

k · · · 2σ2
k −2σ2

k
...

...
. . .

...
...

σ2
k 2σ2

k · · · (i− 1)σ2
k −(i− 1)σ2

k

−σ2
k −2σ2

k · · · −(i− 1)σ2
k iσ2

k

⎤⎥⎥⎥⎥⎥⎦ .

(29)

Moreover, computing the instant probability of correct re-
jection (P(k,i)

C ) and the instant probability of miss detection

(P(k,i)
M (ck)) is needed for the CSA:

P(k,i)
C � 1−

i∑
j=1

P(k,j)
F , P(k,i)

M (ck) � 1−
i∑

j=1

P(k,j)
D (ck) .

(30)

Hence, the values of P(k,i)
C and P(k,i)

M are obtained from previ-
ously calculated probabilities. However, such probabilities are
computed via numerical methods (being CDFs of multivariate
Gaussian random variables). Unless the approximation error is
sufficiently low, we might experience (mainly for high values
of i) an accumulation of errors in the final result, especially
undesirable when leading to negative values in (30). For this
reason, we also include the direct calculation of P(k,i)

C and

P(k,i)
M (ck) which are defined as:

P(k,i)
C � P0

({
Λk
t < γk

}
t≤i

)
,

P(k,i)
M (ck) � P1

({
Λk
t < γk

}
t≤i

; ck

)
. (31)

These can be obtained computing Pj(v
k
i ≤ 0), with vk

i

Hj∼
N (μj

vk
i

,Σvk
i
). Specifically:

vk
i �

⎡⎢⎣Λ
k
1 − γk

...
Λk
i − γk

⎤⎥⎦, μ0
vk
i
�

⎡⎢⎣−γk
...

−γk

⎤⎥⎦, μ1
vk
i
�

⎡⎢⎢⎢⎣
ck − γk

...
(i− 1)ck − γk

ick − γk

⎤⎥⎥⎥⎦,

Σvk
i
�

⎡⎢⎢⎢⎢⎢⎣
σ2
k σ2

k σ2
k · · · σ2

k

σ2
k 2σ2

k 2σ2
k · · · 2σ2

k

σ2
k 2σ2

k 3σ2
k · · · 3σ2

k
...

...
...

. . .
...

σ2
k 2σ2

k 3σ2
k · · · iσ2

k

⎤⎥⎥⎥⎥⎥⎦ . (32)

Σzk
i

and Σvk
i

are derived in Appendix A.

B. Overall Local Performances

The overall probabilities of false alarm (Pk
F ) and detection

(Pk
D(ck)) at the kth sensor for the mth decision are:

Pk
F � P0

(
dkm = H1

)
=

Tk∑
i=1

P(k,i)
F ,

Pk
D(ck) � P1

(
dkm = H1; ck

)
=

Tk∑
i=1

P(k,i)
D (ck) . (33)

The results in (30) do not relate to local decisions except for
i = Tk, in such case, the overall probabilities of correct rejection
(Pk

C) and miss detection (Pk
M (ck)) are readily given:

Pk
C � P(k,Tk)

C , Pk
M (ck) � P(k,Tk)

M (ck) . (34)

C. Local Decision Delays

With the local detection algorithm being sequential, one can
evaluate the average time taken to reach a decision. We use Dk

1j

to represent the expected time taken by the kth sensor to declare
H1 when Hj is true, while Dk

0X refers to the declaration of H0

independently of the true hypothesis:

Dk
10 � E0

(
tkm − tkm−1

∣∣dkm = H1

)
=

Tk∑
i=1

iP0

(
tk1 = i

∣∣dk1 = H1

)
=

1

Pk
F

Tk∑
i=1

iP(k,i)
F ,

Dk
11(ck) �

1

Pk
D(ck)

Tk∑
i=1

iP(k,i)
D (ck) ,

Dk
0X � E

(
tkm − tkm−1

∣∣dkm = H0

)
= Tk . (35)

In particular, given dkm = H0, then Dk
0X = Tk almost surely.

Moreover, it is possible to express the expected time Dk
Xj taken

by the kth sensor to take any decision when Hj is true:

Dk
X0 � E0

(
tkm − tkm−1

)
=

Tk∑
i=1

iP0

(
tk1 = i

)
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= Dk
10Pk

F + TkPk
C = Tk −

Tk∑
i=1

(Tk − i)P(k,i)
F ,

Dk
X1(ck) � Dk

11(ck)Pk
D(ck) + TkPk

M (ck)

= Tk −
Tk∑
i=1

(Tk − i)P(k,i)
D (ck) . (36)

These expressions explicitly show that the local decision delay
of the kth sensor, in the case of sequential detection, is always
upper-bounded by Tk.

VI. COMPUTATIONAL COMPLEXITY

This section assesses the computational complexity and the
communication costs associated with the online FC detection
algorithm in the case of the BSA, DTSA, and CSA.

A. Offline Preparation

In the three algorithms, the main task of the FC is to sum the
observations’ log-likelihood ratios and find the maximum with
respect to the unknown parameters. Since the online computa-
tion of log-likelihood ratios becomes computationally intensive
as the grids get finer, we assume an offline stage preceding
the online detection where the log-likelihood ratios are pre-
computed for each grid point and uploaded to the FC. The
variables in C are known (thanks to the use of real-time weather
data) but vary with time, thus a grid of possible values for those
variables is required as well.

Such an offline data preparation has the benefit of reducing
the real-time computational toll on the FC, but it suffers from
the mismatch between the measured meteorological data and
its closest value on the grid. However, such a difference can be
arbitrarily reduced using a finer grid for the variables in C during
the offline data computation.

B. Computation Complexity

The three different algorithms contain instructions for the FC
on when and how the decision statistic must be updated. Given an
instant where the FC is required to update the statistic, we have
the same computational complexity O(K · |grid(θ)| · |grid(I)|)
across the three algorithms. The main computational difference
lies in the rate at which these updates must be carried out which
varies according to the employed algorithm. Let us assume
that our network consists of a single sensor (K = 1): the BSA
calculates the statistic only once after T ∗ instants (because of its
batch nature); the DTSA, instead, has a mean update period of
D1

X1(ck) when H1 is true (resp. D1
X0 when H0 is true) with T1

as an upper bound (see (36)), while the CSA has an update period
equal to 1. We conclude by saying that: 1 ≤ D1

X1 ≤ D1
X0 ≤ T ∗,

which shows the higher rate of update of the CSA, followed by
the DTSA, both bounded by the BSA. Variations of the CSA
might be proposed where the update of the statistic is carried
out with a period higher than 1 and lower or equal than T1 as
long as no local positive decision is taken (if the update period is
equal to T1 the update frequency would collide with that of the

DTSA). These observations can be extended to networks having
K > 1.

C. Communication Costs

Each architecture is configured with a distinct combination of
decision rule and transmission rule at the sensor level, resulting
in a different average transmission period (ATP) between physi-
cal communications from each sensor to the FC. The subsequent
results show the average transmission periods for each of the
shown architectures:

ATPCSA � E

⎛⎝tkb − tka

∣∣∣∣∣∣
tkb∑

t=tka

τkt = 2

⎞⎠
=

{
Dk

X0/Pk
F , if H0 is true

Dk
X1(ck)/Pk

D(ck) , if H1 is true
, (37)

ATPDTSA � E
(
tkm − tkm−1

)
=

{
Dk

X0 , if H0 is true
Dk

X1(ck) , if H1 is true
, (38)

ATPBSA � tkm − tkm−1 = Tk , almost surely. (39)

The derivation of ATPCSA is reported in Appendix B.
We can immediately observe that ATPCSA ≥ ATPDTSA. This is

a direct consequence of the absence of physical communication
when a sensor decides H0 in the CSA architecture. We can fur-
ther notice, using (36), that ATPBSA ≥ ATPDTSA. A comparison
between ATPCSA and ATPBSA is less trivial and will be discussed
via the case study in Section VII.

VII. RESULTS

The considered scenario simulates the dispersion of saturated
carbon dioxide (CO2), a heavy gas whose density, at atmospheric
temperature and pressure, is about 1.5 times larger than the air
density. Heavy gases need specialized models that can predict
their behavior like the well-known Britter & McQuaid (B&M)
model for continuous releases [39], [40], [41]. The B&M model
is based on the manual reading of a chart which prevents its use
by the FC, thus a set of analytical relationships described in [2] is
employed to convert it into a set of equations. The B&M’s output,
with respect to the kth sensor, is ck. The variables belonging to
the sets A, B, and C, for the B&M model are the following:

A = {θ, I,D}, B = {T, ρ, c0}, C = {Tatm, ρair, u, ϕ}, (40)

whereT , ρ, c0, and I are the temperature, density, concentration,
and intensity of the gas at release condition; D is the release
diameter; Tatm is the atmospheric temperature; ρair is the density
of air at Tatm; finally u and ϕ are the wind speed at the height of
10 meters3 and its direction.4 D is a parameter that, like θ and I ,
should be estimated as it is unknown. However, its contribution
to the value of ck is negligible for small values of D (which is
the case for accidental dispersion), allowing us to assume it as

3If wind speed is available at a different height, several conversion methods
are available [42].

4Wind blowing from north: 0◦ (360◦), east: 90◦, south: 180◦, west: 270◦.
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Fig. 2. (Mean) concentration maps in a dispersion scenario at different inten-
sities with θ = [25 m 75m]T, ϕ = 315◦, D = 0.1m, and u = 5m/s.

known and equal to zero reducing the computational complexity
of the algorithms.

Here, we assume that both the dispersion model and the signal
model in Section II are accurate so that possible differences
between the assumptions and the actual phenomenon can be ne-
glected. The evaluation of the consequences of a non-negligible
mismatch is outside the scope of this work.

The results are obtained via simulation of a monitored square
area with sides of 100 meters with equally-spaced sensors, as
shown in Fig. 2. The simulated settings refer to combinations
of network size K ∈ {9, 16} each with low intensity and high
intensity dispersions. The corresponding four combinations al-
low an exhaustive comparison of the proposed algorithms. The
results of each combination have been computed via numerical
simulation with 105 Monte Carlo runs equally divided between

TABLE I
PARAMETERS USED FOR THE SIMULATIONS

TABLE II
PARAMETERS USED FOR GRID CONSTRUCTION

H0 and H1 via MATLAB software. At each run, parameters
such as wind direction (ϕ), wind speed (u), dispersion position
(θ), intensity (I), and dispersion diameter (D) are generated
according to a uniform distribution in a predetermined realistic
range of values. The remaining parameters are kept constant
across all the runs. The values or the distribution boundaries of
the parameters are shown in Table I, while the specifications of
the parameter grids necessary for the offline preparation of data
are reported in Table II. In the present study, the selection of the
threshold of a detector (γk) is done by fixing Pk

F and Tk. For
a batch local detector, this is done via inversion of (6). For the
sequential case, this can be achieved via common root-finding
methods applied to (27) and (33).

Fig. 3 shows the ROC surfaces of the kth sensor in the
case of a batch detector (Fig. 3(a)) and a sequential detector
(Fig. 3(b) and (c)). These plots are obtained using the relations
introduced in Section V. It is immediate to notice how the
probability of detection strongly depends on ck, for a fixed
probability of false alarm. In terms of area under the curve
(AUC), as ck → 0, we have AUC → 0.5 (random detector),
while as ck → ∞, AUC → 1 (perfect detector), regardless of the
used approach.5 Furthermore, the figure highlights the decision

5We remind that, for a generic detector, AUC �
∫ 1

0
PD(PF ) dPF , where

PF and PD are the probability of false alarm and detection, respectively.
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Fig. 3. ROC surfaces of local detectors using batch and sequential approach (red line indicates performances at Pk
F = 0.05).

Fig. 4. Detection performances of the sensor.

delays in the two different approaches as the probability of
false alarm and ck change. Fig. 3(a) shows a constant decision
delay equal to Tk, while the remaining surfaces highlight the
changes in Dk

11 and Dk
X1. In particular, when Pk

F → 1, we
have (Dk

11,Dk
X1) → (1, 1), while when Pk

F → 0, we obtain
(Dk

11,Dk
X1) → (Tk, Tk) thanks to the truncation that prevents

the delays to diverge to infinity. Finally, in the sequential case,
the plots show how the delays tend to lower from Tk to 1 at a
faster rate with respect to Pk

F as ck increases.
The comparison between a batch and a sequential detector can

be facilitated using Fig. 4. In particular, Fig. 4(a) displays three
sets of ROC curves at different values of ck showing the neg-
ligible difference in performance between the two approaches.
Meanwhile, Fig. 4(b) shows that once Pk

F has been fixed, the
value of Tk required to achieve a desired value of Pk

D is similar
in the case of batch and the sequential approach. Hence we can
say that the differences in terms of detection accuracy between
the batch approach and the sequential approach are negligible.
The main advantage of a sequential approach can be seen in
Fig. 4(c) where the decision delay Dk

X1 is always smaller than
Tk with this difference increasing as we allow higher values
of Tk. This highlights that, once the probability of false alarm
has been fixed, a sensor can perform detection with a smaller
decision delay when a sequential approach is used rather than a
batch approach at virtually the same probability of detection.

Fig. 5 shows the values of the ATP using the different ar-
chitectures once the probability of occurrence of the disper-
sion P1 � P(H1) is marginalized, making it easier to compare

Fig. 5. Average transmission period vs. probability of occurrence.

ATPCSA and ATPBSA. This is because it is fair to assume that
such an event happens with low frequency, with the desirable
reduction communication in the WSN when H1 does not occur.
We can notice that ATPCSA and ATPDTSA increase as P1 de-
creases. However, while ATPDTSA is upper-bounded by ATPBSA

(as discussed in Section VI), the behavior of ATPCSA relative
to ATPBSA varies according to both P1 and ck. In the limit
case of P1 = 1 (resp. P1 = 0), we can see the values of the
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Fig. 6. ROC curves and decision delay curves, K = 9.

Fig. 7. ROC curves and decision delay curves, K = 16.

ATP’s in the hypothesis H1 (resp. H0): in H1, ATPCSA tends
to increase for lower values of ck eventually leading to values
greater than ATPBSA; in H0, ATPCSA is sensibly higher than
ATPBSA, regardless of ck. Thus, ATPCSA shows an improvement
in the reduction of communication costs when the assumption
of low P1 holds.

Next, we discuss the performances of the FC for each of the
four configurations mentioned above in terms of global prob-
ability of false alarm P∗

F � P0(Ĥ = H1), global probability
of detection P∗

D � P1(Ĥ = H1), and global decision delay (in
H1) defined asD∗

X1 � E1(t
∗) for the CSA and DTSA, and equal

toD∗
X1 � T ∗ for the BSA. The results are reported at increasing

values of T ∗ for comparison purposes.
Figs. 6 and 7 illustrate the ROC curves and the curves where

DX1 is shown as function ofP∗
F . Different points of the curve are

obtained by applying different values of global threshold γ∗ to
the FC’s detection rule. The plots report results for T ∗ ∈ {4, 12}
(as these are multiples of Tk).6 The corresponding values of
AUC are reported in Table III (with the intermediate scenario
with T ∗ = 8 also present). Analogously to the AUC of the ROC
curve, we define AUC(D∗

X1) �
∫ 1

0 D∗
X1(P∗

F ) dP∗
F to facilitate

the discussion of Fig. 7(c) and (f). This metric is the mean value
of D∗

X1 over the domain of P∗
F and its values are reported in

Table IV.

6Higher values of T ∗ are not reported as they did not show any significant
changes in the ROC curves and in the respective values of AUC.

TABLE III
AUC IN THE SIMULATED CONFIGURATIONS

TABLE IV
AUC(D∗

X1) IN THE SIMULATED CONFIGURATIONS

The ROC curves show that increasing the number of sensors
improves P∗

D, irrespective of the algorithm used. There are two
reasons for this: Firstly, a larger number of sensors provides more
information to the FC, enabling better discrimination between
hypotheses. Secondly, since gas dispersions are anisotropic,
having more sensors increases the chances of more sensors being
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in contact with the gas plume, resulting in a greater number of
sensors experiencing ck > 0, which enables non-random local
detections. Another noticeable behavior is the higher value of
P∗
D when the intensity I increases. This is because increasing I

(fixing the other parameters) results in a higher ck for those
sensors already in the gas plume, as well as more sensors
experiencing ck > 0 (see Fig. 2 for a visual description of the
effect of an increase of I). Such behavior of P∗

D with respect to
K and I are numerically confirmed by an increase of AUC.

Using Table III, one can notice an increase in the AUC as
higher values of T ∗ are used. Moreover, at T ∗ = 4, the reported
values show AUCCSA > AUCDTSA > AUCBSA, with the differ-
ence in AUC (averaged among the four configurations) between
the CSA and BSA, being 0.0439. This changes at T ∗ = 12,
showing a convergence trend in the AUC, with the BSA having
the highest values. Nevertheless, the average difference in AUC
between the CSA and BSA is equal to −0.0024, making this
difference negligible.

Further analysis of the results showed the reason behind
the negligible differences in performance obtained by all the
architectures as higher values of T ∗ are used. This lies in
the anisotropic behavior of gas dispersions. In the simulated
scenarios, a non-negligible number of Monte Carlo runs resulted
in none of the sensors experiencing ck > 0. In such a scenario all
the sensors (and so the FC) acts as a random detector regardless
of the current value of T ∗.

Unlike the previous discussion, the benefits in terms of D∗
X1,

as K and I increase, are only experienced by the CSA and
the DTSA and are shown in Fig. 7(c) and (f). This means
that while, on one hand, we reach converging values of AUC
by increasing T ∗, on the other hand, we are further ampli-
fying the difference in AUC(D∗

X1) in favor of the sequential
algorithms, and in particular the CSA. Table IV clearly shows
that AUC(D∗

X1)CSA > AUC(D∗
X1)DTSA > AUC(D∗

X1)BSA, for
all configurations and values of T ∗. This is because, in the CSA
and DTSA,D∗

X1 grows slower than T ∗, unlike in the BSA where
the growth is identical.

Both Figs. 6 and 7 show how the selection of the threshold γ∗

affects performances. It can be seen how lowering γ∗ simultane-
ously results in a higher P∗

D and lower D∗
X1, with the drawback

of an increased value of P∗
F . Nevertheless, the curves show how

both the CSA and DTSA are able to have lower P∗
F maintaining

a steady level of P∗
D and D∗

X1. This is especially visible at low
values of T ∗.

The appropriate value of γ∗ can be found via simulation after
selecting a metric to satisfy. Possible strategies include: a) given
a fixed number of sensors, the threshold is chosen by satisfying
a desired maximum P∗

F ; b) given a fixed number of sensors, the
threshold is chosen so that a minimum value of P∗

D is achieved
given a value of I; c) the threshold is selected by minimizing
the Bayes Risk; d) the threshold is chosen, together with the
number of sensors, so that both P∗

F and P∗
D satisfy the desired

requirements, given a value of I .
To conclude, the two proposed algorithms present the follow-

ing differences in terms of performance and complexity:
� The CSA shows superior performances with respect to the

DTSA both in terms of detection accuracy and decision
delay;

� The CSA shows a great advantage in terms of commu-
nication costs, while the DTSA requires more frequent
transmissions from the sensors to the FC;

� The DTSA requires less computations since the FC needs
to update the detection statistic only when a decision is
taken by the sensors. The CSA, on the other hand, requires
the FC to update the detection statistic at each instant.

Thus, because of its high performance, the CSA is particularly
suitable for highly safety-critical applications like hazardous
gas detection. The DTSA, still maintaining high performances,
shows a lower degree of accuracy and higher delay with respect
to the CSA as well as higher communication costs. However, the
DTSA’s lower requirement in terms of computations performed
by the FC makes it a desirable solution as long as a higher number
of sensors is employed.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed two sequential algorithms addressing the task
of distributed gas detection in WSNs, named CSA and DTSA.
The setup consists of sensors taking binary decisions via SD and
transmitting them to a FC which takes a final decision benefiting
from the integration of meteorological data and the dispersion
model. The proposed methods constitute fully sequential alter-
natives to the traditional batch approach (BSA), with the further
innovation introduced by the CSA of a time-aware sequential
fusion. This enabled a significant improvement in terms of detec-
tion accuracy and delay, especially desired in such a time-critical
application. System performance was also assessed in terms of
communication costs showing how a time-aware algorithm as
the CSA greatly reduces transmissions from sensors to the FC.
The case study of CO2 dispersion confirmed the validity of the
proposed architectures.

Future works include a) the reduction of complexity via more
efficient strategies for the searching of (θ, I), including the
estimation of possible variations of I over time; b) modeling
erroneous communication channels; c) use of Bayesian methods
to improve detection and parameter estimation; d) more accurate
statistical characterization of the signal measured by the sensors
including possible correlations between measurements in space
and time; e) development of algorithms accounting for imperfect
knowledge of the dispersion model; f) use of more compre-
hensive dispersion models, or direct use of computational fluid
dynamics software; g) integration of machine learning strategies
for improved detection performances.

APPENDIX A
COVARIANCE MATRICES

The following is the derivation of the matrices Σzk
i

and Σvk
i
,

for any k = 1, . . . ,K and i = 1, . . . , Tk. The element of the
matrix Σvk

i
located in the rth row and sth column is defined as

the following:[
Σvk

i

]
r,s

� Cov
(
Λk
r − γk,Λ

k
s − γk

)
= Cov

(
Λk
r ,Λ

k
s

)
.

When r = s ≤ i, we have that:[
Σvk

i

]
r,s

= Var
(
Λk
s

)
= sσ2

k = rσ2
k .
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On the other hand, when r < s ≤ i:

[
Σvk

i

]
r,s

= Cov

⎛⎝Λk
r ,Λ

k
r +

s∑
j=r+1

λk
j

⎞⎠
= E

⎛⎝Λk
r

⎛⎝Λk
r +

s∑
j=r+1

λk
j

⎞⎠⎞⎠
− E

(
Λk
r

)
E

⎛⎝Λk
r +

s∑
j=r+1

λk
j

⎞⎠
= E

((
Λk
r

)2)− E
2
(
Λk
r

)
= Var

(
Λk
r

)
= rσ2

k .

Analogously, when s < r ≤ i, [Σvk
i
]
r,s

= sσ2
k. Hence, it is easy

to obtain the following:

[
Σvk

i

]
r,s

= min {r, s} · σ2
k , ∀ r ≤ i, s ≤ i .

For the case of Σzk
i
, the previous holds as long as r < i and

s < i. In fact, when r < s = i:[
Σvk

i

]
r,s

� Cov
(
Λk
r − γk,−Λk

s + γk
)
= Cov

(
Λk
r ,−Λk

i

)
= Cov

⎛⎝Λk
r ,−Λk

r −
i∑

j=r+1

λk
j

⎞⎠
= E

⎛⎝−Λk
r

⎛⎝Λk
r +

i∑
j=r+1

λk
j

⎞⎠⎞⎠
− E

(
Λk
r

)
E

⎛⎝−Λk
r −

i∑
j=r+1

λk
j

⎞⎠
= −E

((
Λk
r

)2)
+ E

2
(
Λk
r

)
= −Var

(
Λk
r

)
= −rσ2

k .

Similarly, when s < r = i, [Σvk
i
]
r,s

= −sσ2
k. Lastly, when r =

s = i, we have:[
Σzk

i

]
r,s

� Cov
(
−Λk

r + γk,−Λk
s + γk

)
= Var

(
−Λk

i

)
= Var

(
Λk
i

)
= iσ2

k .

These four cases form the following rule:

[
Σzk

i

]
r,s

=

⎧⎪⎪⎨⎪⎪⎩
min {r, s} · σ2

k , if r < i and s < i
−rσ2

k , if r < s = i
−sσ2

k , if s < r = i
iσ2

k , if r = s = i

= σ2
k min {r, s}

[
1 + 2δi,max {r,s}

(
δi,min {r,s} − 1

)]
.

APPENDIX B
AVERAGE TRANSMISSION PERIOD IN THE CSA

We here report the derivation of the ATPCSA reported in (37).
We show the proof for the case where H0 is true:

E0

⎛⎝tkb − tka

∣∣∣∣∣∣
tkb∑

t=tka

τkt = 2

⎞⎠ = E0

⎛⎝tki

∣∣∣∣∣∣
tki∑
t=1

τkt = 1

⎞⎠
=

∞∑
i=1

E0

⎛⎝tki

∣∣∣∣∣∣
tki∑
t=1

τkt = 1

⎞⎠P0

⎛⎝ tki∑
t=1

τkt = 1

⎞⎠
=

∞∑
i=1

[
(i− 1)E0

(
tk1
∣∣dk1 = H0

)
+ E0

(
tk1
∣∣dki = H1

)]
× P0

(
dk1 = H1

)[
1− P0

(
dki = H1

)]i−1

=

∞∑
i=1

[
(i− 1)Tk +Dk

10

]
Pk
F

(
1− Pk

F

)i−1

= Pk
F

∞∑
i=0

(
i Tk +Dk

10

)(
1− Pk

F

)i
= Pk

F

(
Tk

∞∑
i=0

i
(
1− Pk

F

)i
+Dk

10

∞∑
i=0

(
1− Pk

F

)i)

= Pk
F

(
Tk

1− Pk
F(

Pk
F

)2 +
Dk

10

Pk
F

)
=

Tk(1− Pk
F ) + Pk

FDk
10

Pk
F

=
Dk

X0

Pk
F

.

Similarly, we obtain Dk
X1(ck)/Pk

D(ck) when H1 is true.
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